674 research outputs found

    The Influence of Minimalist Footwear on Knee and Ankle Load during Depth Jumping

    Get PDF
    Plyometric training is used by athletes to promote strength and explosive power. However plyometric activities such as depth jumping are associated with a high incidence of injuries. This study examined the influence of minimalist and conventional footwear on the loads experienced by the patellofemoral joint and Achilles tendon. Patellofemoral and Achilles tendon forces were obtained from ten male participants using an eight camera 3D motion capture system and force platform data as they completed depth jumps in both footwear conditions. Differences between footwear were calculated using paired t-tests. The results show that the minimalist footwear were associated with significantly lower patellofemoral contact force/ pressure and also knee abduction moment. It is therefore recommended based on these observations that those who are susceptible to knee pain should consider minimalist footwear when performing plyometric training

    The scientific potential of space-based gravitational wave detectors

    Full text link
    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 10 thousand to 10 million solar masses, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ~2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics, the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one additional referenc

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD

    Search for single vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for hypothetical vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV. The data were collected by the D0 detector at the Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4 fb^(-1). We select events with a final state composed of a W or Z boson and a jet consistent with a heavy object decay. We observe no significant excess in comparison to the background prediction and set limits on production cross sections for vector-like quarks decaying to W+jet and Z+jet. These are the most stringent mass limits for electroweak single vector-like quark production at hadron colliders.Comment: submitted to Phys. Rev. Let

    Search for pair production of the scalar top quark in muon+tau final states

    Get PDF
    We present a search for the pair production of scalar top quarks (t~1\tilde{t}_{1}), the lightest supersymmetric partners of the top quarks, in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of {7.3 fb1fb^{-1}} collected with the \dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}). We investigate final states arising from t~1t~1ˉbbˉμτν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\mu\tau \tilde{\nu} \tilde{\nu} and t~1t~1ˉbbˉττν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\tau\tau \tilde{\nu} \tilde{\nu}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (mt~1m_{\tilde{t}_{1}},mν~m_{\tilde{\nu}}) plane.Comment: Submitted to Phys. Lett.

    Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV

    Full text link
    This Letter describes measurements of inclusive W (--> e nu) + n jet cross sections (n = 1-4), presented as total inclusive cross sections and differentially in the nth jet transverse momentum. The measurements are made using data corresponding to an integrated luminosity of 4.2 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider, and achieve considerably smaller uncertainties on W +jets production cross sections than previous measurements. The measurements are compared to next-to-leading order perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to leading order pQCD calculations in the 4-jet bin. The measurements are generally in agreement with pQCD predictions, although certain regions of phase space are identified where the calculations could be improved

    Measurement of the ttbar production cross section using dilepton events in ppbar collisions

    Get PDF
    We present a measurement of the ttbar production cross section sigma(ttbar) in ppbar collisions at sqrt{s} = 1.96 TeV using 5.4 fb-1 of integrated luminosity collected with the D0 detector. We consider final states with at least two jets and two leptons (ee, emu, mumu), and events with one jet for the the emu final state as well. The measured cross section is sigma(ttbar)= 7.36 +0.90-0.79 (stat + syst) pb. This result combined with the cross section measurement in the lepton + jets final state yields sigma(ttbar)=7.56 +0.63-0.56 (stat + syst) pb, which agrees with the standard model expectation. The relative precision of 8% of this measurement is comparable to the latest theoretical calculations.Comment: 9 pages, published in Phys. Lett.
    corecore